Comparison principle and stability for a class of stochastic fractional differential equations
نویسندگان
چکیده
منابع مشابه
Subordination Principle for a Class of Fractional Order Differential Equations
The fractional order differential equation u′(t) = Au(t) + γD t Au(t) + f(t), t > 0, u(0) = a ∈ X is studied, whereA is an operator generating a strongly continuous one-parameter semigroup on a Banach space X , D t is the Riemann–Liouville fractional derivative of order α ∈ (0, 1), γ > 0 and f is an X-valued function. Equations of this type appear in the modeling of unidirectional viscoelastic ...
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملCascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability
This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...
متن کاملExponential stability of fractional stochastic differential equations with distributed delay
*Correspondence: [email protected] School of Statistics, Jiangxi University of Finance and Economics, Nanchang, Jiangxi 330013, China Abstract Equations driven by fractional Brownian motion are attracting more and more attention. This paper considers fractional stochastic differential equations with distributed delay. With the variation-of-constants formula, an explicit expression and asymptotic ...
متن کاملA Meshless Method for Numerical Solution of Fractional Differential Equations
In this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. We approximate the exact solution by use of Radial Basis Function(RBF) collocation method. This techniqueplays an important role to reduce a fractional dierential equation to a system of equations. The numerical results demonstrate the accuracy and ability of this me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2014
ISSN: 1687-1847
DOI: 10.1186/1687-1847-2014-221